

MERI College of Engineering and Technology (MERI - CET)

PCC-CSE-302G

Lesson Plan

:	MR. SAHARSH GERA (THEORY + PRACTICAL)
:	Computer Science and Engineering
:	6 th
:	Compiler Design (PCC-CSE-302G)
:	15 Weeks (from MAY, 2021 to AUG, 2021)
	: : : :

** Work Load (Lecture/ Practical) per week (in hours): Lecture-03, Practical-01

Week		Theory	Practical	
	Lecture	Topic(Including	Practical	Topic
	day	assignment/test)	Day	
1 st	1^{st}	Introduction to Compilers	1 st	Write a Program for
	2^{nd}	Language Processors		Token separation with a given expression.
	3 rd	The Structure of compiler: its different phases		
2 nd	1 st	Compiler Construction Tools, Applications of Compiler Technology	2^{nd}	Write a Program for Token separation with a given file.
	2^{nd}	Lexical Analysis: Role of lexical analyzer		
	3 rd	Input Buffering, Specification and recognition of tokens		
3 rd	1^{st}	design of lexical analyzer	3 rd	Write a Program for
	2^{nd}	regular expressions		Lexical analysis using LEX tools.
	3 rd	A language specifying lexical analyzer		
4 th	1 st	Finite automata , conversion from regular expression to finite automata	4 th	Write a Program to

MERI College of Engineering and Technology (MFRI - CET) (MERI - CET)

Session 202	0-2021		Р	CC-CSE-302G
	2^{nd}	and vice versa		identify whether a given
	3 rd	minimizing number of states of DFA		line is a comment or not.
5 th	1 st	Implementation of lexical analyzer, ASSIGNMENT - 01	5 th	Write a Program to check whether a given
	2^{nd}	Syntax Analysis: Role of parsers		identifier is valid or not.
	3 rd	context free grammars		
6 th	1 st	Parsing Technique: Shift-reduce parsing , Operator precedence parsing	6 th	Write a Program to recognize strings under 'a', 'a*b+', 'abb'.
	2 nd	Top down parsing,		
	3 rd	Predictive parsing, ASSIGNMENT -2		
7 th	1 st	LR parsers	7 th	Write a Program to
	2^{nd}	SLR		simulate lexical analyser for
	3 rd	LALR, Canonical LR parser		validating operators.
8 th	1 st	Syntax Directed Translations:	8 th	Write a Program for implementation of
	2^{nd}	Syntax directed definitions		Operator Precedence
	3 rd	construction of syntax trees, syntax directed translation scheme		Parser.
9 th	1 st	implementation of syntax directed translation	9 th	Study of LEX and YACC tools:
	2^{nd}	Intermediate-Code Generation		i). Write a Program for implementation of calculator
	3 rd	three address code		using YACC tool.
10 th	1^{st}	quadruples, triples	10 th	ii). Write a Program for implementation of Recursive
	2^{nd}	ASSIGNMENT - 3		Descent Parser using LEX tool.
	3 rd	Symbol Table & Error Detection and Recovery, Symbol tables		

MERI College of Engineering and Technology (MERI - CET)

Session 202	20-2021		P	CC-CSE-302G
11 th	1^{st}	its contents and data structure for symbol tables	11 th	Write a Program for implementation of LL (1)
	2^{nd}	trees		Parser.
	3 rd	Arrays, linked lists		
12 th	1 st	hash tables	12^{th}	Write a Program for
	2^{nd}	Errors		implementation of LALR Parse.
	3 rd	lexical phase error, syntactic phase error		
13 th	1^{st}	Semantic error	13^{th}	Program to count blank
	2^{nd}	Code Optimization & Code Generation		space and count the no. of Lines
	3 rd	Code generation, forms of objects code		
14 th	1 st	machine dependent code, optimization	14^{th}	
	2^{nd}	register allocation for temporary, user defined variables,		
	3 rd	ASSIGNMENT – 4, Revision of unit-01		
15 th	1^{st}	Revision of unit-02	15^{th}	
	2^{nd}	Revision of unit-03		
	3 rd	Revision of unit-04		